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Abstract—A mixed and a modified complementary energy variational formulation for the problem
of a continuously supported, axially and transversely loaded beam is presented. The beam and the
support are assumed to be linear elastic, and the response of the latter is represented by the current
two-parameter model. An equilibrium finite element approach is developed on the ground of the
second formulation and the results obtained for some test problems are exposed. € 1997 Elsevier
Science Ltd.

1. INTRODUCTION

The analysis of continuously supported beams is an argument that has been treated in the
literature for quite a while (Hetényi, 1946 ; Vlasov and Leont’ev, 1966). This argument
principally concerns the structural, civil and mechanical engineering fields, and many
problems can be handled effectively through such an idealization (Selvadurai, 1979 ; Scott,
1981).

The relationship between beam deformation and the support’s response, i.e., the
support-beam interaction scheme, is the prerequisite for developing a procedure of analysis
of the beam where the support is described in a synthetic way, excluding any direct analysis
of its behaviour. In the case of a transversely loaded beam, a general framework for this
scheme was given by Kerr. The author assumes the hypothesis of bilateral, linear elastic
behaviour of the support, and admits the contact pressure (Kerr, 1964)—or a linear
combination of this pressure and its even derivatives (Kerr, 1984)—as a function of a
linear combination of the interfacial displacement and its even derivatives, the variable of
differentiation being the coordinate along the support’s surface. This description includes
Winkler’s (1867) one-parameter (local) model, and the Filonenko-Borodich (1940), Pas-
ternak (1954) and Vlasov—Leont’ev (1966) two-parameter (nonlocal) foundation models,
which improve on Winkler’'s model by introducing, in the simplest manner, a coupling
between adjacent points of the support’s surface. In the case of axially loaded beams, the
one-parameter model for the support is currently employed (Liu and Meyerhof, 1987;
Chin, 1970 ; Sayegh and Tso, 1988). On the other hand, for the analysis of piles a description
of the soil including coupling is achieved by exploiting fundamental solutions of the
semiinfinite elastic medium problem (Poulos and Davis, 1980). Indeed, this fact may lead
one to believe that it would also be profitable a two-parameter model for the case of an
axially loaded beam.

As the problem of the elastic equilibrium of the beam is governed by ordinary differ-
ential equations, the strong formulation has, as a rule, been exploited in the procedures of
solution exposed in literature (Hetényi, 1946 ; Vlasov and Leont’ev, 1966 ; Selvadurai, 1979 ;
Scott, 1981; Soldatos and Selvadurai, 1985; Miranda and Nair, 1966; Randolph and
Wroth, 1978; Vaziri and Xie, 1990). Following this trend, analytical, or “exact”, dis-
placement functions, which are of an exponential kind, have been applied extensively for
developing stiffness matrices and nodal load vectors, employed in the framework of struc-
tural matrix analysis (Zhahoua and Cook, 1983 ; Ting and Mockry, 1984 ; Eisenberger and
Yankelewsky, 1985; Razagpur, 1986, Eisenberger and Clastornik, 1987; Chiwanga and
Valsangkar, 1988 ; Karamanlidis and Prakash, 1989 ; Sirosh and Ghali, 1989; Razaqpur
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Fig. 1. Scheme of beam and support.

and Shah, 1991; Shirima and Giger, 1992). Obviously, such a modelling makes a mesh
refinement unnecessary in order to improve approximation. However, this gain is actual
only in the cases ranged by the solutions employed, otherwise it becomes unreal, and the
convenience in employing simple algebraic models of representation in conjunction with a
direct variational method can have effective results. Indeed, compatible models have been
applied in this latter kind of approach (Ting and Mockry, 1984 ; Eisenberger and Clastornik,
1987; Mourelatos and Parsons, 1987; Yokoyama, 1988 ; Sayegh and Tso, 1988; Kerr,
1976).

The variational formulations of the problem presented here are in logical cor-
respondence with the displacement variational formulation based on the minimum potential
energy principle and provide a basis for developing alternative finite element models. The
beam is assumed to be linear elastic, and supposed loaded and deformed in a plane. Axial,
bending and shear deformations are taken into account. The support is assumed bilateral,
linear elastic, and to react on the beam axially and transversely according to the two-
parameter model. The potential function of the support’s response is expressed in terms of
displacement components and their first derivatives at the interface (Section 2). A mixed
functional is derived (Section 3), whose arguments are generalized stresses and dis-
placements for the beam. The variational statement from this functional yields the elasto—
kinematic and equilibrium equations in the beam, and compatibility and equilibrium equa-
tions at its extremities. Assuming that generalized stresses satisfy, a priori, equilibrium in
the beam, then a modified complementary energy functional results, whose stationary
conditions include the elasto—kinematic equations in an integral form (Section 4). For the
sake of completeness, a coherent variational formulation of the response of the support to
applied loads is added (Section 5). The latter functional is assumed as the variational basis
for a stress equilibrium finite element approach, and the results obtained in some test
problems are exposed (Section 6).

2. THE GOVERNING EQUATIONS

Reference is made to a straight beam continuously attached to a support, Fig. 1. The
support occupies the interval s, 0 < z < z, of the z-axis, and the beam is placed in the
subinterval b, z, < z < zz, 0 < z,, zz < zc. The ends of the support are free. Beam and
support are assumed linear elastic.

The generic cross section of the beam has area A4(z) and one of its principal axes is
normal to the y—z plane. EA is the axial rigidity of the beam, EI, G4, are the flexural and
shear rigidities in this plane, respectively. I(z) and A4, are cross-sectional moment of inertia
and effective shear area, E and G are Young’s and shear moduli of the material, respectively.

Support and beam are subjected to the distributed loads p(z) and ¢(z), in the y and z
directions, respectively. The loads P,, Pz(P,, P.) in the y direction, the loads Q ,, Qz(Q0. Qc)
in the z direction, and the couples C,, Cy are lumped at the ends A4, B of the beam (O, C of
the support), respectively. The displacements in the y and z directions are denoted by v(z)
and w(z), 0 < z € z.. The displacements of support’s surface and of the geometrical axis
of the beam are admitted to coincide. The flexural rotation in a generic cross section of the
beam is denoted by ¢(z2), z, < z < z,. Axial, flexural and shear strains are denoted by ¢, %,
v, in this order, and the compatibility equations? for the beam are:

+A prime denotes differentiation with respect to variable z. The subscript /u means differentiation, or
variation, with respect to u.
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E=w, (1))
Y= U/+QD, (12)
xX=9¢" (1)

Axial force, shear force and bending moment are denoted by N(z), V(z), M(z), respec-
tively. They are related to the generalized strains by the constitutive equations

N = EAe (21
V=GAy (2,)
M = EIy 2,)

and the contact transformations hold
Ne = N?|/(2EA) + EA€*/2 3)
Vy=V*(2GA)+GA,y* /2 (32)
My = M*/QQEI) + EI*/2. (33)

The strain energy density of the support is assumed in the form

l// = libv (Ua l’/) + l//w(wa M/) (41)
v, = 1/2k,0* +1/2k, v (4,)
v, = 12k, w? +1/2k, w'? (4:)

where the elastic moduli k,, &, k., k,,, are positive, and the following relationships hold

2, = i+ s (44)
Vi = Wouer (45)
W = Wi (46)

U =v,w.

The functional

TPE@,w, @) = 1/2J‘ [EAW?+GA,(' +@)* +Elp*}dz+
b

J N’v(vﬂ Ul) + lpw(w, W/)] dz+
_J(PlH—qw) dz—(Pov+Qow)._o — (Pco+Qcw)._. .+
—(PAU+QAW+CA(p)Z=:A_(PBU+QBW+CB(P)Z=ZB (5)

expresses the total potential energy of the system. Its first variation—Appendix A—via the
fundamental lemma yields the equations of the elastic equilibrium for the system
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e in s\h
lpv/’v - d/;,/’v‘ =p (6I)
lpw‘lw - !l/:v/w’ =4q, (62)
esatz=0and z = z,
_lpv/v’ =P, (71)
_l/lw/w’ = QO’ (72)
lpv/u' = PC (81)
lpw/'w’ = QC7 (82)
einb
(GAr(v"*'(P))/—‘//v/v+¢;/v’+p =0 (9])
(EAW) =Y+ Yo +9=0 %)
GA,(v"+9)—(Elp’) =0, %)
eatz =1z,
“GAI(U’+(/))+I/II;U’_ 1;'/-1:' = PA (101)
—EAW + Y — Vi = O (10,)
—Elp’ =C,, (10;)
eatz =z,
GA,(" + )+ — V¥ = P (11)
EAW 4y, — W:/w = Qg (11,)
Elp’ = C,, (11y)

where the superscript ~ (*) stands for evaluation at 4 —0(4 +0), or at B—0(B+0). Equa-
tions (6)—(8) match the support’s response and given loads. The elastic equilibrium of the
beam (Kerr, 1976) is ruled in » by eqns (9), and at 4 and B by eqns (10), (11), where the
terms with superscript ~ in (10), and the ones with superscript * in (11), express the
interaction with the adjacent parts of the support. Functional (5) is the variational basis
for the methods of analysis via compatible models.

3. A MIXED VARIATIONAL FORMULATION

The support is assumed to extend under the beam only. Functional (5) becomes

TPE(@,w,p) = 1/2j

[EAW?+ GA,(v'+ @) + Elp"?] dz+ J W, 0)+ . (w, w)]dz+
b

b

_J (pv+ qM’) dz— (PAU+ QAW+ CAqD)z=zA - (PBU + QBW+ CB(P)Z=ZB' (12)
b

The generalized displacements at the ends 4 and B of the beam are denoted by v, w,, ¢,
and vy, wj, @z, respectively. The compatibility conditions at 4 read
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v=0, (13)
W=, (13,)
¢ =0a (13,)

and similar conditions also hold at extremity B.

A modified Hellinger—Reissner functional is derived from functional (12). The potential
energy density of the beam is switched over to the generalized stresses by the application
of eqns (1) and (3). Moreover, compatibility conditions (13) at the extremity A, and the
analogous ones at the extremity B, are incorporated into the functional by means of
Lagrange multipliers V,, N,, M, and Vy, N, M, respectively. In this way the following
functional is obtained :

MHR(V,N,M,U, w, (Ps VA; NAaﬂAs VB,NBa Mﬂa UAawA, qDA,UBa WB9 (pB) =

- I/ZJ‘ [N*/EA+V?|GA,+M?|EI dz+J [N+ V(' + o)+ Mo ldz+
b

b

+J [djv(us U/) + ‘ﬁw(w5 W’)] dz— J (pl) + ‘IW) dZ+

5

—[0—v)V+w—w,N, +((p_(pA)MA]z=zA +

+[(w—vs)Vs+(Ww—wg)Np+ (¢ — (pB)MB]Z=ZB+

— (P4 +Qwy+Cup)—(Pgg+Qpws+ Cpps). (a4

The first variation of functional MHR—see Appendix A—results in the stationary con-
ditions:

einbh,z,<z<zp
elastokinematic relationships

w—~N/EA=0 (15,
V' +¢)—V/GA, =0 (15,)
@' —MJ/El=0, (153)
equilibrium equations
N/—lﬁw/w+lllf.,/w'+q=0 (161)
V =+ +p =0 (16,)
V—M =0, (16,)
e at extremity 4, z = z,,,
compatibility
V=10, 17)
w=w, (17,)
P = Qa5 (175)

identification of the Lagrange multipliers with the inner force components

VA = - V"‘/’u/u' 7 (]81)
Ny=—N—{,u ' ‘ (18y)
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M,=—-M, (185)
and with the external loads
Vi=P, (19)
NA = QA (192)
M,=C,, (193)

and analogous expressions at extremity B, z = z,.

After the introduction of identification (18) into functional (12), the resulting func-
tional can be employed in a variational statement for mixed models (Atluri et a/., 1983),
where the displacements in b are the arguments of the strain energy of the support and play
the role of Lagrange multipliers for the weak fulfilment of equilibrium.

4. A MODIFIED COMPLEMENTARY ENERGY FORMULATION

A further, two-field variational formulation can be derived from functional (14) by
prescribing that the generalized stresses fulfil eqns (16) in advance.
Axial force N, shear force V and bending moment M are split into three parts

N =Ny+N,+N, (20,)
V= Vot V,+V, (20,)
M=M+M+M, (205)

defined as follows:
Ny, Vy, M, satisfy equilibrium eqns (16), with external loads and support response
both equal to zero:

Ny =0 (21)
Vy=0 (215)
M, = VO(Z_ZA)+M0 (213)

i.e., Ny, Vo, M, are constant with respect to z, N,, V,, M, are in equilibrium with, and
depend only on, the given loads:

N, =— J gL 22,)
v, = - f O (22)
M, = — f T J O, 22,)

N,, V, are formally defined as the primitives of the support’s response, and M, as the
primitive of V,, as follows:
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Nr = Jz !//w/w dc—l/’w/w'(z)+ww/w'(z) |z=zA (231)
Vr = jz l/’v/v dc_d’v/v’(z)'i'wu/v‘(z) |z=zA (232)
z (4 z
Mr = J dCJ' l/jv/r;(c) dg—'J‘ ‘/’v/v’(c) dc+wv/v’(z) |z=zA(Z—ZA)' (233)

Functional (14) is rewritten in the equivalent form
MHR = — I/ZJ [N*/EA+V?|GA,+M*/ENldz+
b

—J (N+gyw+ (V' +p)o+ (M — V)] dz+J W, (v, v) 4+, (w,w)]dz+

— [N+ Nw+ Vi + Vo+ (M, + Mol +

+{(Ns+ Mw+ (Va+ o+ (Mz+ Mg, ., +

—[(Qu—NIwa+ (Pa—VIva+(Cs— Mo ]+

—[(Qs+Np)ws+ (Ps+ Ve)vs+(Ca+ Mp)ps]. 4

and definitions (21)-(23) and identifications (18) are introduced. Integration by parts on
the terms of the support and some algebra lead to the functional

MCE(V09N0>MO’Ua W, U4, Wy, Q,q,0p, Wp, (PB) =

- 1/2J [N?/EA+V?|GA,+ M?/EI] dz—j [ (v, ')+, (w, w')] dz+

[N+ +Q)Wat (V4 + P04+ (M+ C)p .-, +
+ [N+ — Qp)Ws+ (VA — Prlog+ (M —Cp)ps).=:, (25)

where the displacements in b are simply the arguments of the strain energy of the support.
By setting

N(z) = J N/EAdz (26,)
V(z) = j " VG4, dz (26,)
M) = J " MIEIdz, (265)
M(2) = J z ( j C M/EIdg)dC (264)

the stationary conditions of functional MCE flow from its first variation—Appendix B, the
moduli &, k., k.., k... are positive-——and are
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e with respect to Ny, V, and M,

wp—wy—AN(z5) =0 (27)
vp—Vs+ Qp(2p—2,4) =V (25) +M(25) — M (z5)(z5—24) = 0 (27,)
Ps—@4—M(z5) =0, (27,
o with respect to w
w—wp— N+ N (zp)]k, —[(W —N")k,1] =0 (28))
W—=AH").o., =0 (28,)
W—=H")ery =0 (28;)
wp—w,y— A (25) =0, (28,)

e with respect to v

M —M(zp) =¥+ 7 (z5) —v+ 05— (9~ M (25)) (25— 2)}k,
O - M+ — @+ M (ze)k] =0 (29)

[V’._U/_(pﬂ+'/”(zﬂ)]z=24 =0 ‘ (29,)
[V’_U/_(pﬂ]z=25 =0 (293)
Up— U4+ @p(2p—24) — ¥ (25) +M(z5) — M (2p)(z5—24) = 0 (29

e with respect to wy, v, and @,

N+¢w/w’+QA = 0 (301)
V+i+Py=0 (30,)
M+C, =0, (30;)
e with respect to wpg, vz and @y
N+ —0p=0 (31,
VA —Pp=0 (31y)
M—Cy=0. (31,)

Functional (25) is a modified complementary energy functional for the problem at hand.
Equations (27) are the compatibility statement between the whole deformation of the beam
and the relative displacements of its extremities—see eqn (B1). Equations (28), (29) stem,
in principle, from the stationary conditions with respect to the inner forces which are in
equilibrium with the support’s response in terms of displacements—see eqns (B2), (B3).
This provided, the meaning of compatibility conditions is entirely recognizable for them,
even if they apparently descend from the variation with respect to kinematic descriptors.
In other terms, eqns (28), (29) mean that the stationary of functional (25) is characterized
by the existence of displacements of the support which match with the deformations of the
beam, in terms of inner forces, and with the generalized displacements at its extremities.
Hence w(z) and (z) coincide with the displacements in the beam.

Conditions (30) and (31) express boundary equilibrium of the system, beam plus
support, in this case—support interrupted at the ends of the beam. It should be noted that
eqns (28, ;) are a linear, homogeneous, second order differential system in the function in
the first square brackets of (28,). The solution of this problem is
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w—wg— A+ AN (z4) =0, (32)

hence, this condition is equivalent to eqns (28, ;).
For the same reason, the condition

M= M(zp) =V +V (25)+0—05—(@p— M(25))(z5—2) = 0 (33)

is equivalent to eqns (29, 3).

Conditions (27,) and (27,) are repeated in eqns (28,) (29,). However, they follow from
the variations of functional (25) with respect to the independent arguments, N,, ¥, and w,
v, tespectively—see eqns (B1)-(B3) in Appendix B. This apparent prolixity is due to the
nonlocal response of the support. Indeed, if parameter k,,, were zero—local response—
then compatibility would still remain accounted for by means of eqns (27,), (28)) and (32),
(33), the latter equations being directly obtained from variation (B2). In particular, this
fact is a consequence of the simultaneous presence of independent forces Ny, V, and ¢,
¥,» at the ends of the beam—see eqns (18 ,).

All this provided, the effective stationary conditions for functional (25) are eqns (27),
(32), (33)—compatibility—and (30), (31)—boundary equilibrium. One may conjecture that
the possible application of models of higher degree for the response of the support (Kerr,
1984) would result in a more pronounced formal prolixity.

5. A RELAXED VARIATIONAL FORMULATION FOR THE SUPPORT

A variational formulation, with relaxed continuity requirements, of the support’s
response to given loads is the logical complement to the previous variational formulation.
On this regard, expression (24) is modified by dropping all the terms related to the beam
and by replacing the Lagrange multipliers V,, ¥ and N, N, with (— ) and (—,,,..),
respectively—see identifications (18,), (18,).

Referring for simplicity to the interval 0 < z € z, Fig. 1, and denoting with v, wy, v,
wc the displacements at 0 and C, the following functional results

MPE(u, W, 09, Wo, v, We) = j S Wt y,) dz— J “(po-+qw) dz+
0

+ [(U _vo)wv/v' + (W—" wO)d’w,’w’]z:O - [(U - vC)‘/Iv/U' + (W - wC)l//w,/w’ z=z¢ +
— (Povo +Qowo) — (Pcvc+ Qcwe), (34)

which is a modification of functional (5). It is simple to verify that the stationary conditions
of functional (34) are eqns (6) (7) (8) and the compatibility equations

in z = 0, and the analogous in z = z.

In this way a coherent variational formulation for the whole system, beam plus
(underlying and adjacent) support can be given. On this purpose, it is sufficient to implement
the relevant transitional conditions at the point of connection between consecutive parts of
the support. As an example, in the case of point 4, Fig. 1, the terms in the last round
brackets of functional (34) are dropped, subscript C is changed with subscript 4, and
superscript ~ is imposed to i, in the second square brackets. Simultaneously, superscript
* is imposed to ¥, in the first square brackets of boundary terms in functional (25).
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6. FINITE ELEMENT APPLICATIONS

Functional (25) allows the development of a two-ficld finite element approach where
the response of the support is represented through a prescribed displacement field and the
stress field fulfils, a priori, equilibrium in the beam—see eqns (20)-(23). The related vari-
ational formulation is of a hybrid type (Pian, 1973), because interelemental equilibrium is
enforced as a natural condition and is met at the solution level. On this regard, it should
be noted—eqns (30), (31)—that the interelemental equilibrium conditions match the sum
of axial stress and lumped force y,,,,, or shear force and lumped force y,,- for each element,
so that axial and shear forces are discontinuous, in principle, for a lack of continuity in the
derivative of displacement.

The approach results in an equilibrium stress finite element model and leads to a
matrix-displacement procedure of analysis (Fraeijs De Veubeke, 1965). Implementing a
beam finite element on this ground is a matter of routine, and it seems sufficient here to
sketch the main steps of the procedure. The displacement components are represented
through complete algebraic polynomials of a prescribed degree and the relevant expressions
(4,), (4;) are obtained. The relevant axial and shear forces and bending moment for the
beam, in equilibrium with the response of the support, are obtained from eqgns (23).
Likewise, the inner forces in equilibrium with given load patterns are obtained from eqns
(22). The expressions so prepared are inserted into functional (25), which becomes a
function whose variables are the stress parameters V,, N,, M,, the parameters of the
displacement representation, and the nodal generalized displacements of the beam element,
Ugy Wy, @4, Ug, Wa, @z Extremity loads P,, Q4 C4, Pz, Qp Cjare regarded as generalized
nodal forces of the element. Imposing the stationary condition with respect to stress and
displacement parameters, leads to the discretized compatibility equations of the model.
Likewise, the stationary condition of MCE with respect to the generalized displacements
leads to the discretized equilibrium equations. Finally, elimination of stress and dis-
placement parameters between compatibility and equilibrium equations produces the nodal
generalized force—displacement relationship for the element.

The least degree for the displacement representation is one—see eqns (4), it would be
zero if k,;, k., were zero (Winkler’s model). It should be observed that the displacement
parameters can be kept independent of the nodal displacements so as to fully exploit the
variational approach, since compatibility is not a prerequisite for the model. If n is the
degree of the displacements w and v, taking into account that part of the stress field which
depends on ¥V, Ny, M,, then the resulting indeterminate stress field is complete up to the
degree n+ 1 for axial and shear forces, and n+2 for bending moment. Thus, the degree of
the stress field in the proposed model is, as a rule, larger than the one in a compatible model
with the same number of displacement parameters, thus resulting in a more accurate stress
representation.

Finally, note that functional (34) allows the development of a finite element repre-
sentation of the support, which is coherent with the one applied for the beam. The results
obtained for some test problems are exposed, making reference to Fig. 1 and to Section 2
for the symbols.

Axially loaded beam

The beam has length L = z;—z, and circular cross-section of diameter 4. The one-
parameter (Winkler’s) mode! has been assumed for the support. All the loads on the beam
are zero, except Q,, and the extremity A is free. The solution of the problem—Scott, 1981,
chapter 4—in terms of displacement, w, and axial force, N, is

(E,L/Qp)w = ﬁ(elL( + e‘““g)/e“ — e“"‘L)

N/QB — (e).LC_e—lLi)/eAL _e—AL)’

where { =(z—z4)/L, B = 4p*/(ALnK), /L = p[K(1 +v)]™'?, p=L/d, K= E|E,, A and E
are the cross-sectional area and Young’s modulus of the beam, E; and v, are Young’s
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and Poisson’s moduli of the support, respectively. Winkler’s modulus of the support is
k = nE/(4K).

Three equilibrium finite elements have been implemented on the variational ground of
functional (25), with constant (PESEC), linear (PESEL), quadratic (PESEQ) rep-
resentations of the support’s displacement, respectively—the constant pattern can be
employed for the displacements with Winkler’s model of response. Moreover, two com-
patible models have been implemented, with linear (PESCL) and quadratic (PESCQ)
displacements for the beam.

The values p = 25, K = 50, v, = 0 have been employed for a test problem. The results
obtained for the adimensional displacement, w,, = (E.L/Qz)w, at the extremities 4 and B,
Wa4.q and wg , and for the adimensional axial force, N,; = N/Qj, at the midspan, N,,(L/2),
of the beam are presented in the graphs of Fig. 2 and in Tables 1, 2, 3 vs the number of
(equal) elements employed in the mesh. The comparison appears to be favourable for the
proposed elements, both in terms of displacements and axial force.

Bent beam
The two-parameter (Vlasov—Leont’ev’s) model has been assumed for the support. The
stiffness coefficients;

—k,,, shear force due to unit transverse displacement and null rotation
—k,,» bending moment due to unit transverse displacement and null rotation
—k,,, bending moment due to unit rotation and null displacement

for the extremity 4 of the beam (extremity B 1s fixed), Fig. 1, have been evaluated.

Three equilibrium finite elements have been implemented on the variational basis of
functional (25), with linear (BESEL), quadratic (BESEQ), cubic (BESEC) displacements.
Moreover, the compatible, cubic displacement finite element (BESCC), presented by Zhah-
oua and Cook (1983), has been employed for comparison. Two cases have been considered
(Chiwanga and Valsangkar, 1988 ; Razaqpur and Shah, 1991). In both cases shear defor-
mation of the beam is disregarded, in the theory, by the authors of the referenced papers.
On this regard, a sufficiently high numerical value has been given here to shear stiffness in
order to exclude the effects of shear deformability in the resuits.

Case 1. This problem is exposed by Chiwanga and Valsangkar (1988), Example 1. The
following data have been employed: L = 5m, E = 3.45x 10" kN/m?, I = 4.168 x 10~ * m*,
k, = 3236.5 kKN/m?, k,; = 1298.54 kN. The results of the analysis are presented in Fig. 3
and Tables 4, 5, 6, with respect to the number of elements employed in the discretization.
The exact values of comparison have been obtained from the formulae derived from the
solution of the differential equation reported by Chiwanga and Valsangkar, 1988.

Case 2. This problem is exposed by Razaqpur and Shah (1991), Example 2. The
following data have been employed : L = 5m, EI = 2000 kN x m? k, = 64 kN/m? k,, = 800
kN. The results of the analysis are presented in Fig. 4 and Tables 7, 8, 9, with respect to
the number of elements employed in the discretization. The analytical solution reported by
Razagpur and Shah, 1991, has been applied to derive the exact values for comparison.

For the first case, the data result in k&, <(4k,ED'?, for the second case in
k., > (4k,ED'?, and different analytical developments are required for the exact solution.
From the numerical results exposed, convergence seems better in the first case. In both
cases, the proposed elements exhibit a satisfactory performance.

7. CONCLUSIONS

A mixed and a modified complementary energy variational formulations for the prob-
lem of a beam on a continuous elastic support have been presented and discussed. Such
formulations constitute a formal correlative to the variational formulation of the problem
based on the minimum potential energy principle. The second formulation provides the
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Tab. 1 - Displacement w 4 .4, exact value = 0.262604 |
Elements PESEC PESEL PESEQ PESCL PESCQ
1 -1.379343 0.462728 0.249792 -0.675596 0.422024
2 0143185 0.271417 0262475 0.113602 0.268641 |
4 0238839 0263118 0.262602 0.224240 0.262911]]

8 0.257045 0.262636 0.262604 0.252929 0.262622
16 0261238 0.262606 0.262604 0.260179 0.262605 |

t 1

1 2 4 8 Elements 16
W Bad
9.00 T I
Tab. 2 - Displacement w3 . , exact value = 4.50923
8.00 ~| Elements PESEC PESEL PESEQ PESCL PESCQ
1 657840 473633 452340 322208 4.31970
7.00‘ 2 505588 4.53201 450971 4.01127 448655 |
6.00 \ - 4 465194 451103 450924 436759 4.50749 |
: % 8 454534 450935 4.50923 4.47255 4.50912
5.00 451829 4.50924 450923 449998 450923

4.00

3.00 2 |
1 2 4 8 Elements 16

Naf(l2)

0.205 S

0.200 Tab. 3 - Axial force N ,4(1/2) , exact value = 0.165880|

0.195 Elements PESEC PESEL PESEQ PESCL PESCQ |.

0.190 3 0.178112 0.166039 0.165713 0.159635 0.175580|

oqss | 5 0170423 0.165904 0.165858 0.163606 0.169348 |

7 0168213 0165886 0.165874 0.164712 0.167646
0.180 1 9 0167295 0165882 0.165877 0.165171 0.166947
0175 0.166828 0.165881 0.165879 0.165404 0166594

(R {1 E——
0.165 “ﬁ%
0.160 j
0.155 4 ;

3 5 7 9 Elements 11

’ -——PESEC ——PESEL —&—PESEQ —&— PESCL —¥-PESCQ |

Fig. 2. Axially loaded beam. Displacements w, ,,;, wg,, at the ends, and axial force N (L/2) at
midspan.
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Tab. 4 - Stiffiness k., , exact value = 7059.59

Elements BESEL BESEQ BESEC BESCC
1 692736 698476 704872 T702.73
2 700298 704898 705931 712215
4 7039.68 705883 7059.59 7063.78
8 705422 705955 7059.59 7059.86

7058.23 705959  7059.59 7059.61 |

S ‘ -
6800 i Q 1
i 2 4 8 Elements 16
k,
8000

Tab. 5 - Stiffhess &, ,, , exact value = 7046.34

Elements BESEL BESEQ BESEC BESCC
1 7047.87 685551 703257 °7819.23 |
2 6909.44 702737 7046.07 710524
4 7001.76  7045.13 704634 7049.85

7600 - N~

770", I P U S
\ E 8 7034.64 704627 704634 7046.56
: 16 704339 704634 704634 704636
7200
7000 ¥ e - T
6800 - | |
8 Elements 16
kW
18500 : :
18000 Tab. 6 - Stiffwess & ,, exact value = 15285.1
17500 - Elements BESEL BESEQ BESEC BESCC |

1 141327 147774 152675 162224
147414 152485 152848 153415
15142.0 152829 152851 152883
15249.2 152849 152851 152853
15276.1 152851 152851 152851

g  Elements ¢

-—o—BESEL —&—-BESEQ -—#&—BESEC —¥—BESCC J

Fig. 3. Bent beam. Stiffness k.., k., k,, at extremity 4.



4352

A. A. Cannarozzi and A. Custodi

510 g
500 L‘ :

Tab. 7 - Stiffness k., exact value — 498.053

16

Elements BESEL BESEQ BESEC BESCC
1 467256 467574 497839 502857
2 468.677 495349 498.023 499.856
4 483707 497859 498052 498199
450 b 8 495557 498040 498053 498.063
16 497418 498052 498.053 498.054
440 T .
kvo
660
640

T Tab. 8- Stiffness k. », exact value = 626,622

Elements BESEL BESEQ BESEC BESCC
1 558574 549178 625759 643.810
2 552808 619760 626548 630.985
4 603056 626134 626620 626969
so0 ol 8 620329 626590 62662 626645
16 625022 626620 62662 626623
480 ‘ = ,
1 2 4 8 Elements ¢
k oo
2300
2200 .
2100 /b-': : ——
] -
2000 | Tab9-Stiffiess kp, ot vaue = 2131.05
1900 ? Elements BESEL BESEQ BESEC BESCC
1800 - / 1 165501 193296 212673 220052
1 / 2 186184 211292 213084 214324
1700 > 4 20511 212977 213105 213198
1600* | 8 210977 213097 213105 213111
16 212566 213104 213105 2131.05
1500 : 1
2 4 8 Elements 16

—&—BESEL ——BESEQ -4&A—BESEC

—%—BESCC |

Fig. 4. Bent beam. Stiffness k,,, k., k,, at extremity A.
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basis for an equilibrium finite element approach, which seems to be, from some numerical
tests, a profitable alternative to the traditional, compatible finite element approach.
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APPENDIX A
The first variation of functional TPE reads

o —¥in =p) v+ (pu = ¥l — ) W] dz +
'

s

STPE =J

— [+ Po) 06+ W + Qo) W) mg + [ = P) 80+ (Y — Q) W)+
+j {[( - GA/(U/ + (ﬂ))l + '/’va - '//;/v’ —p] ov + [(_ EAW’)( + l/’wa - '//:fjw’ _'“q) ow +

+[GA,(v +)— (El@)] b} dz+

+{lae —V¥i —GAW + ) = Pl dv+ (Y — il — EAW — Q) Sw+
—(Elg'+C,) 69} +

Wi =i+ GA + @) — Py v+ (Y + Vi + EAW — Q) Sw +

+(Elp'—Cp) 00}

T=zgt

The first variation of functional MHR reads
SMHR = f [(W = NIEA) SN+ (V' + @) — V/GA,) 0V + (¢ — M/EI) 6 M] dz+
b

+J (= V' =Y —P) S0+ (~ N+~ — ) Sw+ (V= M) S] dz +
b

—[(V+ V) oo+ (N+N)ow+(M+M,)d¢l,.. +

+[(V+ V) 60+ (N+Ng) dw+ (M+ M) 9., +

—[o—2) 8V i+ (w—w) SN, + (90—, ) 6M,)._. +

+ =) 6Va+ (w—wg) SNg+ (90— ,) OMy)._. +

+ (V4= Py oo+ (N — Q) W+ (M —C) b0 — [V, S0+, OW._. +

—[(Vy+ Pp) bvp+ (No+ Qp) Swa+ (Myp+Cp) 5] + [ S0+, W]y

APPENDIX B

For the sake of clarity, the first variation of functional MCE is split into the contributions due to the
variations with respect to its arguments :

Ony ot MCE = [wp—wy— N (25)] ONg + [vg— v +95(25—2.4) — ¥ (25) + M (25) — M (25)(zp—2)] 6V +

+los—@a— M (z5)] 0M,,  (BI)

b

8, MCE = — J

N8, N, dz— J 8, dz+
b

—Wa SN+ Wup)ecs, Wa SN+ W) ees, =

=~ f e U W 68 AL = W W' = Y 5w’|,)]dz+
b z

4

..J (WA OW F W SW) A2+
b

+ Wa—W W W], + W5 j Y WAL =

7

= —J {lw—wg— AN + A @)k, —[(W =Nk 1} dwdz+

+{(wg—wa— A (25)) (ks SW ooz, — (W — ANk D32, {B2)
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8, MCE = —j

h

M8, M, dz— J ¥ 8, V, dz _J‘ S, dz+
b b

=04 0Vt )oce, + 08 0, (VoA Wue)c, + 050 M| =

_ f ( — M JZ Vo S0+ AW 61;’) dz— (Y OV )) J (M (z—z,)dz+
b zy a

- l}/” J\Z (J‘: wv/uu dv dg) dc} - + (JI{ J‘: lpl'/z"v' o’ d[:)

- f v [ f W 0040 — (P O] — o av'|z)]dz+
b

z,

+

7

4

- f O/ 0 00+ 0 e O0) dz +
b

+ (s — V)Y O], 05 J ’ Yo Ovdl+

4

+ |:,[ (J‘b Woje ov dc) d{— J l/’u,/r'z" ov' dz+ Y 5v/|2‘(zg T ):| s =
b \dz, ¢

= ‘”J {[Jl — M (2p) =V +¥ (25) —v+vp— (@5 — M(2s))z5—2)}k, +
b
+ (¥ — M+ —@p+ M(z5)k]'} Svdz+
H{(F =0 — ek O], — (Y — V' — Qg+ M (25))k,, S0]._. +
+[(M(2e) =V (25) +v5—04+ (95— M (25)) (25— 2)] (kyy SV, . (B3)
O 0 MCE =[N+, + Q) 0Wa+ (VA + P) S04+ (M+C) 0¢4)=. (B4)

g MCE = [(N+y,.v—Qs) dwp+ (V+ Y — Pg) bvp+(M—Cp) 8¢p]. ., (BS)
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